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Abstract
Timing channels allow attackers to extract secrets by analyz-
ing the execution time of a victim program. Constant-time
(CT) disciplines enforce security against timing attacks via
data-flow/control-flow linearization (DFL/CFL). However,
the rewritten constant-time code typically considerably in-
creases the memory footprint of the original code, causing sig-
nificant overhead. We present VeCT, a compiler-based code
rewriter that leverages vector extensions to retain constant-
time guarantees while improving performance. We first apply
rigorous statistical tests to derive practical “safe-use” rules for
AVX-512 instructions whose implementation details are pro-
prietary; this analysis also reveals a previously unknown vul-
nerability in a state-of-the-art constant-time rewriter. Guided
by these rules, VeCT introduces a novel strategy that elimi-
nates unnecessary data loads in rewritten code, and enables
vectorization to further improve efficiency. We implement
VeCT based on LLVM to automatically transform code into
AVX-512-based constant-time equivalents. On real-world ap-
plications like AES and Blowfish, VeCT reduces the overhead
of transformed code by up to 98.9% compared to the state-of-
the-art, while preserving constant-time behavior.

1 Introduction

Timing attacks can rapidly extract confidential information by
analyzing the execution time of a security-critical system. For
instance, many modern cryptographic implementations are
vulnerable to timing attacks [3, 5, 18, 27]. To mitigate timing
channels, one common practice is to identify and rule out
dangerous code patterns that lead to timing channels. Notably
in cryptographic systems, a common countermeasure against
timing attacks is to follow constant-time (CT) disciplines [1,
6], which rule out (1) branching on secret-dependent data, as
well as (2) accessing memory with secret-dependent offsets
(e.g., an array access with a secret-dependent index).

In order to eliminate CT violations without changing
program semantics, a commonly adopted strategy is Lin-

earization, which may be implemented either through man-
ual intervention, or by means of automatic code rewriting
tools [4, 22, 34, 35, 39]:

• Data-Flow Linearization (DFL) eliminates memory ac-
cesses with secret-dependent offset. For example, a
secret-dependent memory access x= A[s] where s is
secret can be transformed to

for (i=0; i<size; i++) {x = (i==s)? A[i]:x;}

where size is the length of array A. Note that the trans-
formed code has the same semantics as the original code,
but it enforces constant-time discipline as it touches all
elements in array A regardless of the value of s, where
the conditional assignment can be realized as a constant-
time instruction such as cmov on x86 [7].

• Control-Flow Linearization (CFL) eliminates branch-
ing on secret-dependent data. For example, a secret-
dependent branch

if s==0 then x=A[1] else y=A[10]

may be transformed to

x = (s==0)? A[1]:x;
y = (s!=0)? A[10]:y;

Similar to the DFL example above, the transformed code
is CT as it executes the same sequence of CT instructions
regardless of the secret value of s.

While prior works present several automatic lineariza-
tion techniques to rewrite code to obey constant-time dis-
ciplines [4, 35, 39], they all incur significant performance
overhead compared with the original code. For example, we
observe 3.6× to 70.5× overhead in our evaluation (Section 6).
The reason behind the significant overhead is unsurprising
when we take a closer look at the secure code after lineariza-
tion: both DFL and CFL considerably increase the mem-
ory footprint of the original code; they touch all memory
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addresses that could be accessed with different secret values.
Such a set includes the whole array A in the DFL example and
{A[1], A[10]} in the CFL example above. Prior work formal-
ized the set as a differential set and showed that differential
set size is usually large in complex and realistic code [22].

In this paper, we explore a novel approach to boost the
performance of constant-time code, by utilizing Vector Exten-
sions (VE). Vector Extensions are a set of Single Instruction
Multiple Data (SIMD) operations supported by mainstream
modern CPU architectures. By design, VE instructions sig-
nificantly increase data throughput and reduce the number
of instructions needed for tasks such as vector arithmetic,
matrix operations, and signal processing. Hence, VE tech-
nology is widely adopted in scientific computing, machine
learning, and multimedia applications, with support in mod-
ern compilers and optimized libraries, making it a key enabler
of high-performance software.

While VE can enable high-performance software, this pa-
per presents the first secure and efficient application of VE in
the security domain: demonstrating that VE instructions can
enable both secure and efficient mitigation of timing chan-
nels. We focus on Intel’s Advanced Vector Extensions 512
(AVX-512), a representative VE with wide vector registers
and rich instruction sets, offering superior vector processing
capabilities. The key insights that we explore in this paper are
that (1) VE instructions hide some side-channel information
compared with their load/store counterparts, and (2) secure
code after linearization can be optimized with VE support. To
build on the insights, we overcome several key challenges:

• Since the implementation details of AVX-512 are not
publicly documented, the timing and cache behaviors
of AVX-512 instructions were previously unknown. To
address this challenge, we conduct a reverse-engineering
analysis of AVX-512 instructions and utilize principled
statistical testing [17, 31] to uncover potential side chan-
nels inherent in AVX-512 implementations. Guided by
the outcomes of this study, we uncover a set of security
rules for utilizing AVX-512 for side-channel mitigation,
and also identify a previously unknown security vulnera-
bility in a state-of-the-art constant-time code rewriter [4].

• After linearization, a naive AVX-512-based implemen-
tation incurs substantial overhead. For example, a CT
implementation for A[s] = 10 where s is secret requires
three steps: (1) loading all existing values (as vectors)
of array A, (2) among the vectors, modifying the bits
corresponding to A[s] to value 10, and (3) writing the
vectors back to array A. We present novel code rewrit-
ing strategies (such as modifying the memory layout
to eliminate step (1) above, and packing consecutive
memory accesses into one vector instruction) to improve
performance while maintaining CT properties.

• Compiler assistance is required to detect, after lineariza-
tion, which instructions can be vectorized to meet both

security and performance goals. To tackle this challenge,
we built VeCT on top of LLVM [21] and Constantine [4],
enabling automatic transformation of the original code
into an AVX-512-based CT equivalent that adheres to
AVX-512 security guidelines while also exploiting the
performance optimizations identified in this paper.

We evaluate the performance of VeCT on both microbench-
marks and real-world applications. Compared to a state-of-the-
art CT rewriter, VeCT showed significant overhead reductions.
Across all real-world benchmarks, our gather/scatter-based
approach reduced overhead by an average of 46.0% (up to
98.8%), while our packed load/store-based approach achieved
an average reduction of 42.9% (up to 98.9%).

2 Background and Motivation

2.1 Timing Side Channels
Timing side-channel attacks have emerged as particularly per-
nicious threats, posing serious risks to system security [15].
Timing side channels arise when attackers exploit secret-
dependent variations in program execution [42], including
(1) the overall execution time of a program, and (2) observ-
able memory access behavior, such as cache usage, pipeline
behavior, and cache bank contention [23, 41]. These leaks
allow attackers to infer sensitive information by observing
external timing or memory access patterns.

The following example code illustrates a side channel
caused by a secret-dependent branch in an old OpenSSL im-
plementation of sliding window exponentiation [42]. The
result of BN_is_bit_set decides whether to execute the fol-
lowing multiplication function BN_mul, leading to an execu-
tion time difference between the two sides of the branch.

1 if (BN_is_bit_set(p, i))
2 if (!BN_mul(rr, rr, v, ctx)) goto err;

The next example code illustrates another side channel
due to secret-dependent memory accesses in a BearSSL im-
plementation of AES [28]. Accessing an S-box element in
memory fetches a corresponding cache line, creating a side
channel that an attacker can exploit to recover the secret s0.

1 v0 = SboxExt0( s0 >> 24 ) ^ ...

2.2 Vector Extensions
Mainstream modern CPU architectures incorporate vector ex-
tensions, such as Intel AVX [13], ARM SVE [2], and RISC-V
“V” [32], to support single instruction multiple data (SIMD)
operations, enabling data parallelism and improved perfor-
mance. In this paper, we select Intel’s Advanced Vector Ex-
tensions (AVX) family as a representative of VE. Specifically,
we target AVX-512 for its superior vector processing capa-
bilities over earlier AVX variants. Figure 1 depicts the major



9 4 2 6 2 1 2 3

0 2 7 5

1 0 1 1

Vector 
Indices

Mask

Array

9 0 3 1Results

……

src

(a) Gather.

9 4 9 10 2 2 1

9 0 3 1

3 2 5 7

1 1 0 1

Vector 
Indices

Mask

Array

Values

dst

……

(b) Scatter.

4 2 3 2 33 6 6

10 1 1

30 6 6

Mask

Array

Results

src

……

(c) Packed Load.

1 1 0 1

3 0 6 6

Mask

Array

Values

dst

3 0 363 3 6 6 ……

(d) Packed Store.

Figure 1: An Illustration of Vector Memory Instructions. (a) Gather loads elements from non-contiguous memory locations using
indices based on src, with a mask determining which values are kept in results; (b) Scatter stores elements to memory
based on dst in a reverse way of gather; (c) Packed Load reads a block of contiguous memory from src into results with a
mask selection; and (d) Packed Store writes values into contiguous memory from dst with a mask selection. In all cases, the
array resides in memory, while all other operands are held in vector or general-purpose registers.

memory operations in AVX-512 that we utilize in this paper.
The Vector Mask Register enables selective memory load/s-
tore on specific elements. The operation is performed on the
corresponding element only if the corresponding mask bit is
set to one. Otherwise, the operation is suppressed. Packed
Load and Store operations can access packed and contigu-
ous data elements in a single instruction, while Gather and
Scatter may access elements in non-contiguous memory lo-
cations based on specified vector indices. Taking the scatter
operation in Figure 1b as an example, the first vector index 3
specifies that the first element 9 in source register is stored to
the position 3 in the array.

2.3 Constant-Time Code Rewriting

Constant-time (CT) programming [4, 42] is a collection of
programming principles to guide programmers to thwart tim-
ing attacks. Specifically, to comply with CT programming,
programs should always have (1) no secret-dependent branch
(control flow), and (2) no secret-dependent memory access
(data flow), regardless of their secret inputs. However, it is
error-prone and daunting for programmers to write CT code
manually [4]. Thus, CT code rewriting tools have been de-
veloped to automatically transform programs into their CT
equivalents. Existing code rewriters [4, 35, 39] utilize Control
Flow Linearization (CFL) and Data Flow Linearization (DFL)
to eliminate sensitive branches and memory access patterns
with the following interfaces:

ct_select(taken, t, f);
ct_load (src, set, set_size);
ct_store (dst, value, set, set_size);

CFL removes CT-violating branches by introducing a
taken predicate that tracks the real value of the branch condi-
tion, executing both sides of the branch, and merging the exe-
cution results with ct_select. The ct_select, a constant-
time selection instruction, returns t if the taken is true;
otherwise, it returns f. DFL replaces each secret-dependent
memory access with ct_load/store in the original code,
ensuring all possible addresses of such a sensitive memory

access (i.e., differential set [22]) are touched after lineariza-
tion. A common implementation of ct_load and ct_store
accesses each and every element in the address set set. Since
such possible addresses are often contiguous [23], set and
set_size represent the start address and its range. For in-
stance, Listing 2 shows a linearized equivalence of the origi-
nal code in Listing 1, where c is a secret and can be revealed
through a timing channel. DFL guarantees all elements in
the differential set (e.g., in) are touched for each load so that
attackers cannot distinguish which element is accessed.

Naively, DFL can be achieved with a simple for-loop that
iterates over every element in set. A ct_load sequentially
accesses each candidate address, selecting the value from the
target and ignoring the values for all others. For a ct_store,
it first loads all possible elements into registers (i.e., Preemp-
tive Data Load), and then only the target value is updated with
the new data while keeping others unchanged. Finally, all val-
ues are written back uniformly. More efficient linearization
techniques are also introduced in prior work [4, 35].

2.4 Vector Extension-Based DFL

To alleviate the performance overhead of the naive for-loop-
based method, Constantine [4] incorporates AVX vectoriza-
tion with a striding strategy, enabling parallel memory ac-
cesses and reducing the number of load/store instructions. It
supports two common variants: (1) Gather/Scatter version
and (2) Packed Load/Store version.

However, Constantine’s naive adoption of AVX vectoriza-
tion has two notable limitations. First, a security concern:
the constant-time guarantees of AVX memory instruc-
tions remain insufficiently studied. Masked AVX memory
instructions may vary the set of accessed addresses based
on mask values, leading to potential side channels. In fact,
we demonstrate in Section 4.4 that Constantine’s generated
CT code is still vulnerable to timing attacks, which defeats
the purpose of CT code rewriting. Without a comprehensive
analysis, their impact on constant-time behavior cannot be
conclusively determined, and they may potentially introduce
side channels. Second, an efficiency concern: the capability



1 if (c < 28) {
2 out = in[c];
3 } else {
4 out = in[c - 28];
5 }
6

Listing 1: Original Code

1 taken = c < 28;
2 pt = ct_select(taken, &in[c], NULL);
3 bt = ct_load(pt, in, sizeof(in));
4 pf = ct_select(!taken, &in[c - 28], NULL);
5 bf = ct_load(pf, in, sizeof(in));
6 out = ct_select(taken, bt, bf);

Listing 2: Rewrited Code with DFL-then-CFL

1 taken = c < 28;
2 pt = ct_select(taken, &in[c], NULL);
3 pf = ct_select(!taken, &in[c - 28], NULL);
4 [bt, bf] = vct_load([pt, pf], in, sizeof(in

));
5 out = ct_select(taken, bt, bf);

Listing 3: Rewrited Code with CFL-then-DFL

of AVX to fully optimize DFL remains underexplored. For
instance, masked store instructions can selectively update ele-
ments within a vector, yet Constantine does not fully exploit
this feature, resulting in redundant memory operations and
traffic. Moreover, conventional single-element CT memory ac-
cess interfaces hamper the utilization of parallelism available
in AVX-512 instructions, resulting in suboptimal performance.
These limitations motivate the need for a redesigned AVX-
based DFL that preserves constant-time guarantees while
eliminating redundant memory accesses.

3 Threat Model

As a constant-time rewriter, the transformed code must adhere
to established CT security principles, including:

• The program’s control flow must not depend on secret
values to prevent attacks by measuring execution time or
instruction-cache access patterns.

• The memory addresses accessed during execution must
not depend on secret data to defend against attacks based
on memory access patterns.

• The program should choose data operand independent
timing (DOIT) instructions [11], the execution time of
which does not depend on the values of their operands.

Following these principles and prior work [1, 4, 42], we
assume a strong adversary model, which is capable of execut-
ing arbitrary code concurrently with the victim program, even
including on the same physical or logical core. Additionally,
the adversary has access to the source code or binary of the
target program and tries to extract sensitive information by
exploiting microarchitectural side channels.

In particular, we assume the attacker can perform three
kinds of timing attacks in the literature. The first: (T1) Exe-
cution Timing-Based Attacks measure the execution time
of the entire victim program or specific instructions of it.

Instead of measuring the timing of the victim program, the
other two kinds of timing attacks measure indirect effects of
secret-dependent memory accesses of the victim program:

T2 Cache-Level Attacks: These attacks leverage spa-
tial leakage at the granularity of cache lines (e.g., 64
bytes). The adversary observes whether or not a specific

cache line was accessed, such as Flush+Reload [40],
Prime+Scope [29], and Prime+Probe [26].

T3 Word-Level Attacks: Side channels can emerge at
word granularity (e.g., 4 bytes), for example through
cache bank conflicts [41] or false dependencies between
loads and stores [24]. While cache bank conflicts are
architecture-dependent and have not been observed on
recent processors [24], we consider the potential threat
and adopt MemJam [24] to test if AVX instructions are
vulnerable to word-level attacks in this paper.

4 CT Guarantees for AVX-512 Memory Access

Although AVX-512 memory instructions provide highly effi-
cient data parallelism with SIMD, their susceptibility to side-
channel attacks (e.g., whether the mask value of an AVX-512
instruction can be revealed via a timing channel) has not yet
been systematically investigated in the literature.

In this section, we perform principled statistical tests on
a series of microbenchmark experiments to unearth whether
mask registers and vector indices of AVX-512 instructions
can affect execution time, cache-level state, and word-level
state. The main contributions of the study are: (1) it provides
a reusable statistical testing framework for understanding CT
guarantees for vector extension implementations on specific
hardware, (2) it discovers the following CT guarantees of
Intel AVX-512 memory instructions,1 which can serve as the
security guidelines for using them in CT implementations,
and (3) it reveals that a naive adoption of AVX-512 in prior
work [4] is indeed vulnerable to timing attacks.

Takeaway

G1 Packed Load instruction guarantees CT proper-
ties even when mask bits are secret-dependent.
G2 Packed Store instruction guarantees CT proper-
ties as long as at least one bit is set in the mask.
G3 Gather / Scatter instruction with all-one mask
guarantees CT properties as long as each cache line
is uniformly accessed regardless of the index’s value.

1We focus our study on Intel processors, given their prominence among
architectures supporting vector extensions. Nevertheless, our t-test framework
is broadly applicable to other architectures. A comprehensive evaluation
across additional platforms is deferred to future work.



4.1 Methodology
To test whether each mask and vector index, when applicable,
can be revealed via a timing channel, we adopt a statistical
hypothesis test that tries to disprove the null hypothesis that
“the two timing distributions are equal” given two different
masks, or indices. Specifically, we follow dudect [31] and
use an online Welch’s t-test [17] to assess the null hypothesis
stated above. Recall that a timing attack manifests in three
forms (Section 3). The t-test checks against each of them:

• Execution time (T1): Measuring the execution time of
the target AVX-512 instruction under varying setups.

• Cache flush time (T2): Measuring the flush time for
each potentially accessed cache line after executing the
target AVX-512 instruction to determine which memory
regions were touched during execution.

• Word-level access time (T3): Measuring the access la-
tency of potentially conflicting memory addresses after
executing the target AVX-512 instruction with various
setups. In particular, we follow the state-of-the-art attack
MemJam [24] to test if word-level microarchitectural
conflicts (e.g., false dependencies or cache bank con-
tention) exist. As this threat model is stronger than other
models above, we evaluate T3 only for those setups that
remain CT under T1 and T2.

Each instruction was evaluated 100,000 times for every
configuration. An elevated t-statistic t from the t-test indi-
cates a potential CT violation. Following [31], we adopt a
threshold of 10: t ≤ 10 suggests constant-time, while t > 10
indicates potential violation. We further distinguish samples
with t > 500 solely to highlight areas with high statistical con-
fidence. For readability, we normalize the t-statistic to 0, 1,
and 2 according to the three categories above, which are repre-
sented in heatmaps as Green, Orange, and Red, respectively.
We perform the t-test on two different Intel CPU platforms,
including Intel Core i9-11900 and Xeon Gold 5215, and the
CT guarantees above hold for both. Due to space constraints,
we present representative results on i9-11900. The complete
set of results is included in Appendix A.

4.2 Mask Register
To evaluate how the mask register affects CT properties of
AVX-512 masked memory instructions, we design a test suite
based on two primary dimensions of mask values: (1) The
number of bits set to one (i.e., how many elements are ac-
cessed), and (2) The positions of the one-bits in the mask (i.e.,
which set of elements are accessed). These two dimensions re-
spectively capture both quantitative and structural variations
in the mask.

Recall that each packed load/store instruction processes
sixteen 32-bit integer elements within a single cache line
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Figure 2: T-test Results for Packed Load in a Single Cache
Line under Varying Masks. Inside the Purple Boxes: masks
with the same number of 1-bits, but at different positions.
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(c) Word Access.

Figure 3: T-test Results for Packed Store in a Single Cache
Line under Varying Masks. Inside the Purple Boxes: masks
with the same number of 1-bits, but at different positions.

by design (Section 2.2). Each gather/scatter instruction
is more complicated: it also operates on sixteen vector
indices that might span multiple cache lines. For the
single-cache line setup, we confine all indices to the range
0 to 15. For the multiple-cache line setup, we use indices
[0,1,16,17,32,33,48,49,64,65,80,81,96,97,112,113]
to spread accessed elements across 8 consecutive cache lines.

The t-test results are visualized in the heatmaps that we ex-
plain next, where each cell represents the t-statistic between a
pair of masks. To aid interpretation, we highlight two specific
classes using Purple Boxes: (1) Cells within boxes corre-
spond to mask pairs with the same number of enabled bits
(1-bit count) but different positions. This allows us to isolate
the effect of position-dependent behavior. (2) Cells outside
boxes correspond to mask pairs with different 1-bit counts,
where both the number and position of accesses vary.
Packed Load. The t-test shows minimal variation under
all three threat models: execution time, cache flush time,
and word-level access time. As visualized in Figure 2, all
t-statistics are below 10 (the actual t-values are all well be-
low 10) regardless of mask value. This indicates that neither
the number of accessed elements nor their positions impact
observable timing behavior. Thus, we conclude that masked
packed loads are constant-time.
Packed Store. In contrast, packed stores do exhibit mask-
dependent execution time and cache behavior. As shown in
Figures 3a and 3b, the all-zero mask (i.e., 0x0000) clearly
exhibits a distinct timing behavior when compared with other
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Figure 4: T-test Results for Gather in Multiple Cache Lines
under Varying Vector Indices. Purple Boxes and Blue Dashed
Boxes both isolate index groups for the same set of cache
lines. The index groups within Purple Boxes in addition have
an identical number of accesses per cache line.
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(b) Cache Flush.2
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Figure 5: T-test Results for Scatter in Multiple Cache Lines
under Varying Vector Indices. Purple Boxes and Blue Dashed
Boxes both isolate index groups for the same set of cache
lines. The index groups within Purple Boxes in addition have
an identical number of accesses per cache line.

masks. Our hypothesis is that the Intel processor implements
hidden optimizations for all-zero masks, causing distinct tim-
ing and cache behavior. That said, all non-zero masks do
exhibit CT properties under all threat models.
Gather and Scatter. Unlike packed load/store, gather/scat-
ter operations show stronger correlation between their timing
behaviors and mask values under the t-test: both quantitative
and structural variations in mask values violate CT proper-
ties in both single- and multiple-cache line setups (results are
included in Appendix A). These effects, especially when span-
ning multiple cache lines, may be observable via execution-
time or cache-flush measurements. Our hypothesis is that the
implementations of masked gather and scatter instructions
selectively access elements based on the mask, causing the
timing dependency on masks. To securely use gather/scatter
operations in CT implementations, we should set masks to be
all-ones (i.e., 0xFFFF).

4.3 Vector Indices

To investigate the CT properties of vector indices used in
gather and scatter operations, we conducted experiments

2We present the results for line 7, and the rest are shown in Appendix A.

with all-one masks (i.e., 0xFFFF) while varying the vector
indices. For the t-test, we select eleven representative index
groups, each consisting of sixteen indices, which are carefully
designed to explore two types of variation: (1) Inter-cache
line quantitative variation (i.e., varying how many elements
are accessed in each line), and (2) Intra-cache line structural
variation (i.e., accessing different elements in the same cache
line). Due to space constraints, all index groups used for
testing are shown Table 2 in Appendix A.

The t-test results are visualized in Figures 4 and 5 for
both gather and scatter instructions. Similar to the results we
showed earlier, here Purple Boxes highlight index group pairs
where only the positions of accessed elements within a cache
line are changed. In addition, Blue Dashed Boxes indicate
pairs where the number of accessed elements per cache line
is changed, while they access the same set of cache lines.

We first observe that position-only changes (see purple
boxes in Figures 4 and 5) lead to no timing difference, in-
dicating that accessing different elements in the same cache
line preserves CT properties. Moreover, the same applies to
the number of accessed elements per cache line, as long as
each cache line is accessed at least once. This is indicated by
the low t-values within the blue dashed boxes. In addition,
repeated accesses to the same location (e.g., Index 3 and 7
issue repeated accesses to locations [0,32,64,96] twice and
three times, respectively) do not violate CT properties, as long
as each cache line is accessed at least once.

On the other hand, we observe that CT properties are vio-
lated among index groups that access different sets of cache
lines, as indicated by the orange cells outside the boxes. In
conclusion, gather/scatter operations are CT with respect to
index variations, as long as every cache line is touched.

4.4 Case Study: CT Violation in Constantine

An important consequence of the investigation into CT guar-
antees is the identification of a CT violation arising from the
use of AVX-512 instructions in Constantine [4], a state-of-the-
art CT code rewriter. For example, the code below shows both
the original non-CT version (left) where a secret-dependent
condition c determines whether to store v to the i-th element
of the array out or not. The corresponding transformed code
with Constantine is shown to the right.
1 // original code
2 if (c > 0)
3 out[i] = v;

1 taken = c > 0; // transformed code
2 p = ct_select(taken, &out[i], NULL);
3 ct_store(p, v, out, sizeof(out));

Constantine’s implementation of ct_store directly modi-
fies memory using masked scatter instructions. This design
requires a precise mask to avoid corrupting memory, where
only the single bit for the target address is enabled. If taken is
false, the address p resolves to NULL, which results in all-zero
masks due to no address match. Otherwise, the correspond-
ing bit in the mask is set to one. This transformation clearly



100 200 300 400
Cache Line Index

150

200

250

Ca
ch

e 
Lin

e 
Fl

us
h

 T
im

e 
(c

yc
le

s)

Mean
Median
Array Index

(a) Access with Index i.

100 200 300 400
Cache Line Index

150

200

250

Ca
ch

e 
Lin

e 
Fl

us
h

 T
im

e 
(c

yc
le

s)

Mean
Median
Array Index

(b) Access with NULL Pointer.

Figure 6: The Flush Time of Each Cache Line in the Data
Flow Linearized Array by Constantine.

violates CT guarantee G3 (Section 4.2). In fact, our evalua-
tion shows that the execution time when taken is true is
approximately 10.3× of that when taken is false.

To confirm CT violation on cache effects, we respectively
measured the flush times of each cache line associated with ar-
ray out for both cases: taken= true and taken= false.
The results are shown in Figure 6. There is an evident differ-
ence in flush times by comparing these two cases, revealing
the secret value of c. Moreover, the peak for taken= true

also reveals the range of the accessed index i. Consequently,
the transformed code is vulnerable to timing attacks.

5 Design of VeCT

In this section, we design VeCT, a secure constant-time code
rewriter with high efficiency using vector extensions. Figure 7
shows the workflow of VeCT, which rewrites an unsafe pro-
gram to its CT equivalent. Initially, VeCT performs constant-
time violation detection via information flow analysis [4, 42]
( 1 , see Section 5.1) to detect program statements that violate
CT properties ( 2 ). Then it applies Control-Flow Lineariza-
tion ( 3 , see Section 5.1) and adopts vectorization identifica-
tion to identify vectorizable regions ( 4 , see Section 5.4.1) in
the code. Next, VeCT linearizes data flow ( 5 ) by replacing
vulnerable memory accesses with CT equivalents, including
both single-element accesses ( 6 , see Section 5.3) and vector-
ized accesses ( 7 , see Section 5.4) identified in the previous
stage. Finally, VeCT generates the constant-time version of
executable code with LLVM ( 8 ).

5.1 CT Violation Detection and Linearization

Extensive research has been dedicated to detecting CT vio-
lations (e.g., [4, 36, 42]), in terms of both secret-dependent
branches and memory accesses, and automatically eliminat-
ing them by CFL and DFL (e.g., [4, 22, 35, 39]). Since VeCT
builds upon established methods for violation detection and
CFL, we do not elaborate on these aspects here and instead,
direct interested readers to the corresponding prior work.

We do note that VeCT deliberately performs CFL before
DFL in order to optimize performance without compromising

security. To illustrate why, consider a code snippet from the
DES algorithm in LibTomCrypt [19], as shown in Listing 1,
where both sides of a branch access the same array but with
different indices. A DFL-then-CFL approach would handle
each branch separately, resulting in two distinct CT memory
access instructions after the branch is resolved (see Listing 2).
In contrast, our CFL-then-DFL approach first linearizes the
control flow. This allows us to merge the memory accesses
from both branches into a single, vectorized CT memory in-
struction, as shown in Listing 3. This transformation, without
altering program semantics, reduces the number of memory
operations from two to one. The result is a considerable reduc-
tion in total memory traffic and an improvement in execution
efficiency, all while fully preserving the CT guarantees.

Next, we elaborate our contributions on DFL.

5.2 Baseline: a Naive Adoption of AVX-512
Constantine [4] is the first work that utilizes AVX-512 in
CT rewriting. However, as shown in Section 4.4, its naive
adoption of AVX-512 leads to CT violations, which defeats
the purpose of CT code rewriting. To fix this vulnerability, we
first present a naive solution based on the existing rewriting
strategies in Constantine:

• To implement ct_load(src,set,set_size), use ei-
ther Packed Load or Gather operation with all-one masks
and vector indices covering all cache lines (for Gather).
Then use vector operations to extract the value of src.

• To implement ct_store(dst,value,set,set_size),
first use Packed Load or Gather to load all elements as
vectors, similar to ct_load above. Then, in the vectors,
update the corresponding value at the target address dst
to value. Finally, use either Packed Store or Scatter
operation with all-one masks and vector indices covering
all cache lines (for Scatter) to store the updated vectors
back to memory.

Compared with Constantine [4], the baseline here only
modifies the implementation of scatter-based ct_store with
an extra load step, which we term preemptive data loads.
This is the same strategy used by the packed store-based
ct_store in Constantine. As the changes are minor, we refer
to this baseline as Constantine+ hereafter.

5.3 VeCT Rewriting Strategy
We first detail CT interfaces ct_load and ct_store in
VeCT. Informed by the CT guarantees developed in this pa-
per (Section 4), we observe the following opportunities for
performance improvement:

• Constantine+’s implementation of ct_store employs
preemptive data loads prior to stores to thwart the timing
attacks demonstrated in Section 4.4. However, doing so
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Figure 7: An End-to-End Rewriting Procedure for VeCT.
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Figure 8: Changed Memory Layout in VeCT.

also incurs considerable overhead. Based on CT guar-
antees G2 and G3, we observe that the preemptive data
loads can be safely eliminated as long as at least one
bit is set in the mask of Packed Store, or as long as
each cache line is uniformly accessed for Scatter with an
all-one mask. Accordingly, VeCT modifies the memory
layout so that at least one dummy element per cache line
is being written to.

• Constantine+’s implementation of ct_load conserva-
tively loads all elements with Packed Load. Based on
CT guarantees G1, we observe that this is unnecessar-
ily conservative: it is secure to set the mask for Packed
Load according to the target address. Doing so simpli-
fies the operations that extract the desired value from the
returned vector afterwards.

• An additional noteworthy observation regarding the CT
guarantees of AVX-512 is that multiple memory load and
store operations can be consolidated into a single vector
instruction, provided that the conditions G1 through G3
are satisfied. More specifically, it is permissible to con-
figure the mask of Packed Load/Store, or vector indices
of Gather/Scatter operations according to a set of target
addresses, to enable parallelism. This approach enables
the full utilization of AVX-512 operations in CT—an
opportunity that has not been previously explored.

5.3.1 Memory Layout

To enable secure and efficient CT operations in VeCT, we
modify the layout of protected memory regions by (1) align-
ing protected data structures to the cache line size, and (2)
reserving a dummy element at the beginning of each cache

ct_store
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Figure 9: Packed Store-based CT Store in VeCT.

line. This reserved element serves as a fallback access target
to ensure CT guarantees of AVX-512 operations. Consider
an array of 32-bit integers. Its modified layout contains a
dummy slot at the first position of each 64-byte cache line,
with other array elements shifted accordingly, as illustrated
in Figure 8. VeCT performs memory layout transformation
consistently on all protected memory regions, including the
global memory area, the heap, and the stack.

5.3.2 Constant-Time Load

In VeCT, ct_load is realized through two strategies based on
Packed Load and Gather operations, respectively. The Packed
Load variant allows mixed masks, including those that are
secret-dependent, due to CT guarantee G1. Compared with
Constantine+ that always uses all-one masks, activating only
the bits corresponding to the target element ensures only the
intended value is retrieved, removing mask selection opera-
tions and simplifying a reduction operation afterwards, which
extracts the desired value from vectors.

The Gather variant enforces CT behavior by assigning
each index in the vector indices sequentially to a distinct
adjacent cache line and applying all-one masks. Due to CT
guarantee G3, the implementation is secure as exactly one set
bit per cache line is active. The target element is then isolated
via mask selection and reduction operations.

5.3.3 Constant-Time Store

Packed Store-based. For each cache line, VeCT sets the
mask bits for both the dummy element and the target element,



1 2 3 …… 16 17 18 19 31……150

ct_store (cont’d)

46

0 6 2 …… 6 15 16 17 29……14-Array

Cache line 0 Cache line 1

1 1 1 1Mask …… 1

……

Value

Actual Index

6 6 6 6 …… 6

2 16 32 48 …… 240Vector Indices
……

……

……
=15*16
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if any, to be one; all other bits are set to zero. Consider the
example shown in Figure 9 where the original code writes
value 6 to the first element in the array.3 In round 0, VeCT
sets the first and third bits to one (i.e., with mask 0x0005)
and writes value 6 to the target address. In subsequent rounds,
VeCT only sets the first bit to one (i.e., with mask 0x0001)
as no further target address exists. Since only the dummy
element’s bit is active, no other elements are modified in
each cache line. More concretely, the comparison between
Constantine+ and VeCT for each round is shown below:
1 //ct_store in Constantine+
2 o = packed_load(p, 0xFFFF)
3 n = mask_move(v, mask, o)
4 packed_store(p, n, 0xFFFF)

1 //ct_store in VeCT
2 mask = get_mask_by_compare

(p, dst) | 0b1
3 packed_store(p, v, mask)

To the right, get_mask_by_compare compares the target
address dst against the addresses that reside in the cache
line starting from address p. It generates a mask where the
bit corresponding to dst is one, if found, while all other bits
are zero. So, the bit operation or at Line 2 correctly sets
mask’s value as described above. Altogether, VeCT upholds
CT guarantee G2 while eliminating preemptive loads at Line
2 in Constantine+, which improves performance (Section 6).
Scatter-based. VeCT utilizes all-one masks for scatters but
sets each vector index to either the target element, or a dummy
element if no target element exists for the current cache line.
Figure 10 illustrates how to achieve the same functionality as
Figure 9. Recall that each scatter instruction can access up
to 16 cache lines (8 for 64-bit integers) in parallel. Since the
target element is located at the actual index 2 within cache line
0, the first element of vector indices is set to 2, and the rest are
set to the indices of dummy elements in corresponding cache
lines (e.g., index 16, 32, etc.). The following code contrasts
the approach taken by Constantine+ with that of VeCT:
1 //ct_store in Constantine+
2 o = gather(p, idx, 0xFFFF)
3 n = mask_move(v, mask, o)
4 scatter(p, n, idx, 0xFFFF)

1 //ct_store in VeCT
2 idx = generate_indices(p,

dst)
3 scatter(p, v, idx, 0xFFFF)

On the right side, generate_indices first computes the
specific index i of dst (relative to the base address p) and
identifies its cache line number j. It then updates the (j+1)-th

3We use positions in the original array here and index them starting from
0 unless otherwise specified.

entry of the default vector indices to i to get idx. In this
way, VeCT avoids preemptive loads with gather at Line 2
in Constantine+, while ensuring CT properties.

5.4 Vectorized Constant-time Load and Store

Programs frequently execute multiple independent and con-
tiguous load or store operations on the same object. A classic
example is accessing lookup tables such as S-boxes in cryp-
tographic algorithm implementations, where each access is
independent yet vulnerable to timing attacks. Consider a code
snippet from AES algorithm in BearSSL [28], where v0 is
computed by performing four S-box lookups from the same
table with different secret-dependent indices.

1 v0 = SboxExt0( s0 >> 24 )
2 ^ SboxExt1((s1 >> 16) & 0xFF)
3 ^ SboxExt2((s2 >> 8) & 0xFF)
4 ^ SboxExt3( s3 & 0xFF);

If each lookup is rewritten to a standalone call to ct_load
interface, the entire table must be visited four times in its CT
equivalent, which is expensive in both execution latency and
memory bandwidth. Nevertheless, based on CT guarantees
G1 and G3, it is possible to use one single Packed Load or
Gather operation to access all four indices in one shot, enhanc-
ing performance by exploiting data-level parallelism while
remaining CT. Thus, these benefits motivate us to provide
novel vectorized CT load and store mechanisms in VeCT.
Interfaces. We introduce two new interfaces:

vct_load (src_list, set, set_size);
vct_store(dst_list, value_list, set, set_size);

where src_list and dst_list specify the target addresses
to be accessed; value_list provides the new values for
each address in vct_store; and set and set_size are the
same as non-vectorized CT load/store instructions, specifying
memory regions that the original code might touch.

5.4.1 Vectorization Identification

VeCT adopts a simple procedure to identify continuous se-
quences of load or store instructions that require DFL.4 When
arithmetic or other computational instructions are encoun-
tered, VeCT continues to scan the subsequent source code for
additional load/store instructions, until it encounters instruc-
tions that might compromise correctness, such as function
jumps or interleaved load and store operations. The collected
batch, of either load or store instructions, is then consoli-
dated into vector-width mini-batches. VeCT then rewrites
each mini-batch into one vct_load/vct_store instruction.

4We expect that a more sophisticated identification process [20,37] could
further improve the performance of our work, which we leave as future work.
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5.4.2 Packed Load- and Store-based

We extend packed load and store instructions to perform vec-
torized constant-time memory accesses. However, a straight-
forward extension of constant-time memory accesses for a
single element is not feasible in a vectorized context.
Vectorized CT Load. For a single-element load, we can
simply iterate across all cache lines and extract the only value
of the target address. However, vectorization introduces a
challenge: each cache line may contain the data for multiple
distinct target addresses simultaneously. Moreover, those tar-
get addresses are dynamic, and they can be in an arbitrary
order. So one crucial issue is to permute the data in the loaded
cache line vectors to match the order of target addresses in
the program, as well as output results. Figure 11 illustrates
the challenge for vct_load([2,15,0],A,680) where array A

is [0,2,4,8, ...]. A packed load for the first cache line loads
a vector in the form of [−,0,2,4, ...] into a vector register.
However, we need to place values 0 and 4 into specific desig-
nated slots in the final output, in the form of [4,−,0,−, ...] in
an efficient way. Note that sorting the target addresses before
invoking vct_load may circumvent the challenge. But the
naive approach might violate CT properties. In addition, it
incurs prohibitive overhead due to the extra memory accesses
required for sorting.

To address this problem, vct_load employs a permutation-
based strategy with vector extensions to efficiently rearrange
loaded values in parallel and avoid time-consuming for-loops
on each address in src_list. The process works as follows
in each round: (1) it first fetches an entire cache line into a
vector register using an all-one mask. (2) Then, it constructs a
permutation index vector to specify the corresponding offset
of each element within the loaded vector; the offset is marked
as invalid (i.e., -1) when the element is not accessed in the cur-
rent round. (3) Finally, masked permutation operations (e.g.,
_mm512_mask_permutexvar_epi32/64 in AVX-512 [12])
efficiently move the relevant values from the loaded vector
to their correct slots, directed by the permutation index vec-
tor. In round 0 of Figure 11, the permutation index vector is
[3,−1,1,−1, ...] since addresses 2 and 0 in the src_list are
located at positions 3 and 1 in the current cache line. Then
a masked permutation operation with the mask 0x0005 and
the permutation index [3,−1,1,−1, ...] copies the fourth and
second elements in the loaded vector into the first and third en-
tries in the result. This process repeats for subsequent cache
lines, with the intermediate results from each round being

vct_store

40

9 5 …… 32 34 ……28Array

Round 0 Round 1

1 1Mask …… 0 0 0 …… 0 ……

Value 
Vector

15 0Dst. List

9 5 …… -1 -1 -1 -1 …… -1-1

0

582 -1 7-1

1 0 1 1

-1 7

2 2

7 9Value List 5 95How?

15

7

Pa
ck

ed
 S

to
re

Figure 12: Packed Store-based Vectorized CT Store in VeCT.

combined to produce the final output.
Vectorized CT Store. For packed store, the challenge is
similar to that of packed load, but in the reverse direction:
we need to distribute values from value_list to potentially
non-contiguous memory locations across different cache lines.
Consider an example vct_store([2,15,0], [5,7,9],A,680)
in Figure 12. To perform A[0] = 9 and A[2] = 5 in the first
round, we need to store a vector in the form of [−,9,−,5, ...]
with a proper mask. Therefore, the challenge is to efficiently
construct the proper vector, where values are distributed cor-
rectly for each target address in the current round. Again,
a naive sorting solution might be neither constant-time nor
high-performance.

To enable efficient parallel processing with CT properties,
VeCT first generates a reverse mapping for each round, which
maps the position of each target address within the current
cache line back to its original position in both dst_list and
value_list; it maps other positions to an invalid position
(i.e., -1). The mapping is then used to permute the values
from value_list into a value vector that matches the mem-
ory layout of the current cache line. In round 0 of Figure 12,
the reverse mapping is [−1,2,−1,0, ...] since position 0 (with
address 2) and position 2 (with address 0) in dst_list are
located at position 4 and 0 in the current cache line, respec-
tively. Hence, the reverse mapping maps 4 to 0 and 2 to 2,
respectively. A masked permutation instruction then uses the
mask 0x000A and the reverse mapping [−1,2,−1,0, ...] to
place the values 5 and 9 into the fourth and second positions
of the value vector, respectively, leaving the rest as a dummy
value (-1). In the store phase, VeCT executes a packed store
with a mask (e.g., 0x000B in round 0), activating the bits for
the target element(s) and the dummy element (the first one).
This tactic ensures that every cache line is written to in every
round, thus maintaining CT behavior. Writes to reserved ele-
ments do not alter program semantics. Across all rounds, all
intended targets are updated, while in cache lines without any
targets, only the reserved elements are modified.

5.4.3 Gather- and Scatter-based

Conventional gather- and scatter-based ct_load/store on a
single element can touch up to N cache lines per round, where
N is the total number of elements each gather/scatter can han-
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dle (e.g., 16 for 32-bit integers or 8 for 64-bit integers). In
contrast, each vct_load/store accesses |src/dst_list|
(i.e., the number of addresses in src/dst_list) elements
at once. In the worst-case scenario, where all addresses in
src/dst_list fall within a cache line, each gather/scatter
can touch at most W = N −|src/dst_list|+1 cache lines.
To mitigate this variability and ensure constant-time accesses,
VeCT constrains each gather/scatter to access exactly W con-
tiguous cache lines in every round. For example, gather can
touch up to 14 cache lines in each round, as shown in Fig-
ure 13. By proactively enforcing this fixed memory foot-
print for each instruction, we ensure that the memory access
pattern remains uniform. This approach is secure because
|src/dst_list| is determined at compile time, and it does
not change based on runtime secrets.
Vectorized CT Load. For the gather-based vct_load,
VeCT adjusts the vector indices of gather and fixes the mask
register to all-ones. In each round, the index vector is con-
structed as follows: (1) Handle Target Addresses: For each
target that falls within the current round’s memory range,
we calculate its corresponding index. Figure 13 illustrates
how vct_load([2,15,0],A,680) works, where array A is
[0,2,4,8, ...]. Since all addresses [2,15,0] are within the first
round’s range, their corresponding indices occupy the first
three slots of the vector ([3,17,1,−, ...]). If a target is outside
this range (as would be the case in later rounds), its index
slot is set to a benign default value (i.e., 0). (2) Pad with
Dummy Indices: The rest of the vector indices are assigned to
point to reserved dummy elements located at fixed positions
in each untouched cache line. After that, if there were still
unassigned indices left in the vector indices, VeCT sets them
to the default index (0) again. Note that repeated indices do
not break the CT guarantee (see Section 4.3). For example, in
round 0, since all three real targets have already accessed the
first two cache lines, the dummy indices are crafted to access
the remaining untouched lines. In the following rounds, all
indices point to either dummy elements in each cache line
or the default entry ([0,0,0,0,16,32, ...208]) as the target ad-
dresses are out of the range. The intermediate results from
each round are accumulated using masked selection and com-
bination operations. Ultimately, only the values from the real
targets are preserved, while all values loaded via the dummy
indices are discarded. Note that gather’s inherent permutation
capability obviates the need to construct permutation index
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Figure 14: Scatter-based Vectorized CT Store in VeCT.

vectors required for packed load-based vct_load.
Vectorized CT Store. In this approach, VeCT maintains an
all-one mask for scatter with the carefully constructed value
vector and vector indices. First, a value vector is prepared.
Consider the example vct_store([2,15,0], [5,7,9],A,680)
in Figure 14. In round 0, to update addresses [2,15,0], their
new values are placed into the value vector sequentially from
the start. All other slots are filled with a default value -1
(e.g., [5,7,9,−1, ...]). Next, the index vector is constructed
to ensure that every cache line within the current round’s
range receives at least one write, using the same approach
as the gather-based vct_load. Finally, the scatter instruction
is executed with an all-one mask. By construction, it writes
the target values to their intended targets while storing the
benign placeholder value (-1) to the dummy locations in all
other cache lines, preserving constant-time security without
altering the program’s semantics. Likewise, scatter inherently
handles the reverse mapping, eliminating extra steps required
by packed store-based vct_store.

6 Implementation and Evaluation

We implemented VeCT on top of LLVM 9.0 [21] and Constan-
tine [4]. For a fair comparison with Constantine+, we reused
Constantine’s existing framework for information flow anal-
ysis and CFL. As shown in Figure 7, VeCT performs CFL
before DFL. Besides optimizing ct_load and ct_store,
as elaborated in Section 5.3, VeCT also supports vectorized
CT load/store operations vct_load and vct_store (Sec-
tion 5.4), which are absent in Constantine+.

While VeCT uses AVX-512 masked non-memory instruc-
tions (e.g., selection, calculation), the latency of these instruc-
tions is independent of the mask’s value, as documented by In-
tel [11]. Hence, by design, code generated by VeCT executes
in constant time, preserving the overall security guarantee.

To justify the efficiency of VeCT, we performed experi-
ments on a machine with an Intel Core i9-11900 and 32 GB
DRAM running Ubuntu 24.04. Two variants of VeCT were
evaluated, including a vectorized version (vct_load/store)
and a single-element version (ct_load/store), denoted as
Vector and Single, respectively. We also compared them
with Constantine+. All transformed functions were executed
10,000 times after warming up in each test. The reported val-
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Figure 15: The Execution Time Overhead (Log Scale) of Microbenchmarks with Varying Array Sizes for Int32 and Int64.
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Figure 16: The Execution Time Overhead of Microbenchmarks with Varying Access Counts for Int32 and Int64.

ues correspond to the median over 10 runs. The main metric
is the execution time overhead over the original insecure code
for each execution. A shorter time means lower overhead.

6.1 Microbenchmark
We evaluated VeCT with microbenchmarks that perform mul-
tiple consecutive reads/writes to randomly selected positions
within the same array. The access count refers to the number
of consecutive accesses in each test.
Overview. We varied the array size from 10 to 10,000 ele-
ments and considered 32-bit integer (int32) with an access
count of 12 and 64-bit integer (int64) data types with an ac-
cess count of 6. Results are summarized in Figure 15. Across
all DFL strategies, an increase in the array size invariably
leads to higher overhead, as it increases both the frequency
and volume of memory traffic. Compared to Constantine+,
our Vector shows a significant performance advantage. For
stores, Vector reduces overhead by 22.6% to 80.4% across
both scatter- and packed store-based variants, and for loads,
by 13.9% to 81.7% across both gather- and packed load-based
variants. This substantial lead stems from the fact that vec-
torization dramatically reduces repetitive memory accesses;
the entire array is touched only once per vectorized opera-
tion, rather than once per access in the original code. Single
also reduces overhead, with ct_store and ct_load cutting
overhead by up to 71.3% and 32.7%, respectively. The re-
duction is particularly pronounced for writes, which can be
attributed to the elimination of preemptive data loads. Our
approach reduces both memory traffic and the total instruc-
tion counts, avoiding performance degradation from extra
cache accesses [23]. However, for a very large array (e.g.,
an array of size 10,000 with int64), the overhead reduction
for Single is less significant because its modified memory
layout introduces extra cache lines that need to be touched.

Impact of Access Count. To test the impact of access
count, we varied it from 2 to 15 for int32 and from 2 to 7
for int64 due to the vector width in AVX-512. Its impact
varies across our different strategies for Vector as shown
in Figure 16. For the gather-based vectorization, the overhead
reduction first increases and then decreases as the access count
grows. This occurs because to maintain a constant-time pat-
tern, each gather instruction must cover fewer cache lines at
higher access counts (see Section 5.4.3), thus requiring more
gather instructions overall. A similar, though less pronounced,
phenomenon is observed for the scatter-based approach. In
contrast, the packed-load approach achieves greater overhead
reduction with larger access counts, since each packed load
consistently handles one cache line, making the total num-
ber of memory accesses nearly fixed regardless of the access
count. The packed-store approach shows a stable overhead
reduction due to the additional costs of constructing reverse
indices and value vectors for stores. For Single, its advantage
narrows with more accesses. This convergence is because:
(1) numerous accesses amplify the overhead of fetching addi-
tional cache lines in VeCT; and (2) cache hits and hardware
prefetchers become more beneficial with repeated accesses at
high access counts, narrowing the performance gap.
Security Validation. To validate the CT property of the
transformed programs, we performed an additional t-test on
the generated code with the access count of 2 and array size
of 100. The t-test measures the timing for each program using
two different secret inputs, while all other settings remain the
same as Section 4.1. For all setups, the resulting t-values were
below 10, indicating that the generated code is constant-time.

6.2 Real-World Applications
To further investigate performance in practical scenarios,
we adopted the same benchmarks as Constantine [4] and



Table 1: The Execution Time Overhead of Real-World Appli-
cations for VeCT and Constantine+ (C+). Overhead for C+ is
measured against the original insecure code, while for VeCT,
results show the overhead reduction compared to Constan-
tine+. Positive values (↓) signify an overhead reduction.

Gather/Scatter-based Packed Load/Store-based
C+ Single Vector C+ Single Vector

BearSSL [8, 28]
aes_big 27.4× 38.3% ↓ 68.9% ↓ 14.4× 9.1% ↓ 79.9% ↓
des_tab 17.7× -2.1% ↑ -2.0% ↑ 7.3× 3.9% ↓ 3.8% ↓

CHRONOS [39]
aes 57.8× 15.0% ↓ 98.8% ↓ 68.3× 27.9% ↓ 98.9% ↓
des 21.7× 15.4% ↓ 19.3% ↓ 10.7× 17.3% ↓ 24.8% ↓

des3 22.2× 14.8% ↓ 18.4% ↓ 10.9× 16.9% ↓ 24.8% ↓
anubis 33.7× 12.2% ↓ 17.0% ↓ 28.7× 20.1% ↓ 23.4% ↓
cast5 14.4× 14.2% ↓ 13.8% ↓ 12.5× 27.0% ↓ 26.1% ↓
cast6 70.5× 12.9% ↓ 12.8% ↓ 65.6× 28.2% ↓ 27.9% ↓
fcrypt 17.0× 14.9% ↓ 14.9% ↓ 14.7× 28.4% ↓ 28.4% ↓
khazad 53.7× 16.3% ↓ 17.2% ↓ 30.6× 25.5% ↓ 28.5% ↓

APP-CR [39]
des 21.1× 15.3% ↓ 13.0% ↓ 8.3× -18.3% ↑ -17.5% ↑

RACCOON [30]
dijkstra 54.4× 41.4% ↓ 57.1% ↓ 25.3× 19.5% ↓ 33.8% ↓

binsearch 8.0× 20.7% ↓ 21.1% ↓ 8.6× 20.9% ↓ 19.2% ↓
histogram 56.8× 19.0% ↓ 77.5% ↓ 66.6× 29.8% ↓ 31.8% ↓

rsort 62.3× 1.0% ↓ 1.3% ↓ 56.4× -0.2% ↑ 0.0% ↓
permutation 59.5× 51.1% ↓ 86.3% ↓ 69.4× 37.7% ↓ 12.5% ↓

heappop 7.5× 17.6% ↓ -19.5% ↑ 8.1× 25.1% ↓ -64.2% ↑
LIBGCRYPT [39]

camellia 3.6× 11.2% ↓ 8.8% ↓ 3.0× 13.4% ↓ 17.4% ↓
des 15.6× 14.4% ↓ 14.3% ↓ 6.8× 16.2% ↓ 15.9% ↓
seed 18.1× 12.9% ↓ 13.1% ↓ 15.8× 28.2% ↓ 28.2% ↓

twofish 59.9× 15.3% ↓ 65.8% ↓ 64.4× 27.2% ↓ 64.1% ↓
S-CP [39]

aes_core 25.4× 11.1% ↓ 11.5% ↓ 21.6× 21.9% ↓ 22.1% ↓
cast-ssl 43.3× 14.4% ↓ 18.5% ↓ 25.3× 26.7% ↓ 28.3% ↓

PYCRYPTO [38]
aes 56.8× 44.0% ↓ 46.8% ↓ 34.6× 29.2% ↓ 32.9% ↓
arc4 12.5× -17.2% ↑ 34.0% ↓ 14.3× 15.6% ↓ 29.7% ↓

blowfish 18.2× 14.1% ↓ 95.2% ↓ 16.8× 31.3% ↓ 94.7% ↓
cast 14.1× 13.3% ↓ 13.4% ↓ 13.6× 31.8% ↓ 31.9% ↓
des 4.1× 8.3% ↓ 19.3% ↓ 2.2× 25.1% ↓ 45.0% ↓

des3 5.7× 16.4% ↓ 25.0% ↓ 2.6× 18.8% ↓ 36.0% ↓
GEO. MEAN 22.6× 17.6% ↓ 46.0% ↓ 16.6× 21.5% ↓ 42.9% ↓

BIA [23], which are derived from various real-world appli-
cations requiring DFL. For those read-only benchmarks, we
omit memory layout modification as an optimization. We mea-
sured the execution time of specific functions. For instance,
in programs from cryptography libraries, we measured key
generation and encryption time, and for Ghostrider, we timed
their core operations. Table 1 presents the execution time
overhead with VeCT and Constantine+ for each benchmark.

Overall, across all benchmarks, the geometric mean of
the overhead reduction for our gather/scatter-based Vector
and Single is 46.0% and 17.6%, respectively, compared
to Constantine+. For our packed load/store-based versions,
Vector and Single achieve overhead reductions of 42.9%
and 21.5%, respectively. Taking aes in CHRONOS as an
example, gather/scatter-based and packed load/store-based
Vectors reduce overhead by 98.8% and 98.9%, respectively.

VeCT significantly reduces overhead in two categories of
programs. 1) Write-intensive programs: For instance, in

permutation, the gather/scatter-based Vector and Single
reduce overhead by 86.3% and 51.1%, respectively, due to
the large number of assignments a[b[i]] = i. In contrast, for
rsort (Radix Sort), overhead reduction is negligible. This
is because the critical data structure (i.e., a small counting
array) is not large enough to produce significant performance
differences. 2) Programs with high vectorization potential
for memory access: As analyzed in Section 5.4, some cryp-
tographic algorithms, including AES and Blowfish, contain a
large number of parallelizable load operations, which allows
VeCT to achieve marked overhead reductions. Additional
characteristics for each benchmark, including the proportion
of operations that can be vectorized, those requiring DFL, and
the total number of memory accesses, are provided in Table 3
in Appendix B.

7 Related Work

CT Programming Analysis. Programming analyses, such
as [36, 42], have been introduced to detect CT violations in
software. For a comprehensive overview, we refer the reader
to the recent survey presented in [9]. Other work [10, 33]
focuses on studying whether optimizations used by compilers
break constant-time implementations. Our work is orthogonal
to those tools: VeCT automatically rewrites CT-violating code
detected by CT-violation detection tools.
CT Programming Rewriter. Prior work investigates
how to automatically transform programs into CT equiva-
lents [4, 22, 34, 35, 39]. SC-Eliminator [39] assumes a weaker
threat model (T2), and Lif [35] identifies and resolves po-
tential memory errors in SC-Eliminator’s rewritten code. In
complementary lines of work, Ma et al. [22] developed a
precise static analysis to compute the differential set, an im-
portant parameter for CT load/store (see Section 2.3); Soares
et al. [34] introduced partial CFL to advance CFL techniques.
The most relevant work is Constantine [4], which represents
the current state-of-the-art in DFL. We employ it as a primary
baseline for comparison with VeCT throughout the paper.
AVX-Related Attacks. There are security attacks related
to AVX. Kim et al. [16] proposed an AVX-based timing side-
channel attack to compromise address space layout random-
ization. Downfall [25] performs a transient execution attack
to leak sensitive data via gather data sampling. In contrast,
VeCT focuses on how to use AVX as a defense mechanism for
timing attacks. While we also discovered a new side channel
in an existing CT code rewriting tool, the timing attack ana-
lyzes the effects of AVX-512 operations on execution time,
cache-level effects, and word-level conflicts.

8 Conclusion and Future Work

In this work, we have introduced VeCT, a constant-time code
rewriter that leverages vector extensions for high performance.



Our novel rewriting strategy, based on a rigorous analysis of
AVX-512, reduces overhead by up to 98.9% over the state-
of-the-art rewriter, while maintaining CT guarantees. This
analysis also revealed a new vulnerability in the prior rewriter.

For future work, we plan to extend VeCT to other vector
extensions, such as ARM SVE [2], and RISC-V “V” [32]. To
do so, we can reuse our t-test framework to assess the CT guar-
antees of VE instructions on additional hardware platforms.
If guarantees are similar to those on Intel processors, VeCT
can be reused as is. However, if additional dependencies are
identified, VeCT can fall back to the native adaptation with
all-one masks (see Section 5.2). If some dependencies are
absent, VeCT can also adopt more aggressive optimizations.

We also plan to adopt more sophisticated techniques, such
as alias analysis, handling specialized function calls (e.g.,
math functions), loop unrolling, and instruction graph trans-
formations [14, 20, 37], to further enhance vectorization by
identifying vectorization opportunities within more complex
instruction patterns.
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Ethical Considerations

We have carefully considered the ethical implications of our
research and implemented several measures to ensure our
experiments and findings were handled responsibly.

We identified four primary stakeholder groups who could
be impacted by our research and its publication:

• End-Users: The general public who may use software
rewritten by Constantine.

• Software Developers and System Vendors: Developers
of the Constantine framework.

• The Security Research Community: Our academic and
industry peers who perform side-channel defense with
Constantine.

• Malicious Actors (Attackers): Individuals or groups who
seek to exploit vulnerabilities that are similar to our iden-
tified vulnerability of Constantine.

End-Users. Our research process had no negative impact
on end-users. All experiments were conducted in a controlled,

isolated laboratory environment on our own hardware. This
isolation was a core part of our experimental design, ensuring
that no external systems, public data, or user services were
at risk. Our work not only identifies a vulnerability of Con-
stantine, which promotes a recent patch in Constantine that
fixed the issue, but also provides a new, open-source defen-
sive tool (VeCT) that, if adopted by end-users, will lead to
more secure software. Additionally, we also urge users of any
software built with Constantine to check with their vendors
and promptly apply the recent patch.
Software Developers and System Vendors. To avoid pub-
licly disclosing the identified vulnerability without prior no-
tice to the developers, we adhered strictly to the practice of
responsible vulnerability disclosure. We reported the vulnera-
bility to the Constantine developers, providing them with our
proof-of-concept and all necessary details well in advance of
this publication. They acknowledged the problem and have
since fixed the vulnerability, following our suggestions.5 We
suggest that all developers and vendors who use Constantine
update to the latest version or use our tool VeCT instead.
The Security Research Community. To ensure our re-
sults are reproducible, transparent, and fair, all real-world
applications evaluated in our paper are publicly available and
open-source. This allows our peers to verify our findings,
build upon our work, and perform fair comparisons, thereby
advancing collective knowledge. We contribute new insights
into side-channel attack vectors and the efficacy of vector
extensions as a mitigation, advancing the scientific field.
Malicious Actors (Attackers). The primary potential harm
of this publication is that an attacker could use our analysis
of the Constantine vulnerability to craft an exploit. This harm
was substantially mitigated by our adherence to responsible
disclosure. The “window of opportunity” for an attacker to
exploit this specific finding was minimized. Moreover, our
tool VeCT serves as an alternative to thwart potential attacks
on similar vulnerabilities. While any security tool could theo-
retically be misused by attackers to probe for weaknesses, its
primary utility and design are for hardening systems, not for
exploitation.

By committing to a fully isolated test environment, we elim-
inated risks to all external stakeholders during the research
phase. The decision to publish was based on a clear harm-
benefit analysis. The primary potential harm was effectively
mitigated through responsible vulnerability disclosure, and
the primary outcome of our paper is to arm defenders and
contribute positively to the ecosystem’s security.

Open Science

To promote transparency and reproducibility, the source code
for our tool and all benchmarks used in our experimental

5Please refer to https://github.com/pietroborrello/constant
ine/issues/6 for more details.

https://github.com/pietroborrello/constantine/issues/6
https://github.com/pietroborrello/constantine/issues/6


evaluation are publicly available at https://doi.org/10.5
281/zenodo.17822446 and https://github.com/qishe
ng-jiang/VeCT.
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A Supplementary Results for CT Guarantees
on AVX-512 Memory Access Operations

A.1 Mask Register
A.1.1 Single Cache Line

Gather. For masked gather operations, the t-test results
shown in Figures 17a and 17b indicate that the time distri-
butions are affected by both the number of 1-bits and the
positions of active elements in the mask. Similarly, t-statistic
becomes particularly high when comparing all-zero masks
and non-zero masks. This suggests that even within a sin-
gle cache line, gather instructions may incur observable side
effects based on the access pattern, including differences in
execution time and post-execution cache line state.
Scatter. Masked scatter instructions show similar timing
variation in Figures 17c and 17d. For example, when the mask
changes from all zeros to all ones, the resulting t-statistic
for flush time reaches 188, suggesting that it might not be
constant-time.

A.1.2 Multiple Cache Lines

Gather. As illustrated in Figures 18a and 19, both the num-
ber of active mask bits and their positions significantly in-
fluence the execution time and cache line flush time. This is
because whether a specific cache line is accessed depends
on whether any of its elements are selected for loading. For
example, mask 0x0000 and mask 0x0200 both result in no

0x
00

00

0x
80

00

0x
40

00

0x
02

00

0x
01

00

0x
A00

0

0x
60

00

0x
42

04

0x
44

44

0x
55

00

0x
59

99

0x
55

55
0x

FFF
F

Mask x
0x

00
000x

80
000x

40
000x

02
000x

01
000x

A00
00x

60
000x

42
040x

44
440x

55
000x

59
990x

55
550x

FFF
F

M
as

k 
y

(a) Gather: Exe-
cution.
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(b) Gather:
Cache Flush.
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(c) Scatter: Ex-
ecution.
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(d) Scatter:
Cache Flush.

Figure 17: T-test Results for Gather/Scatter in a Single Cache
Line under Varying Mask Registers.
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(a) Gather.
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(b) Scatter.

Figure 18: T-test Results of Execution Time for Gather/Scatter
in Multiple Cache Lines under Varying Mask Registers.
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(c) Line 2.
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(d) Line 3.
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0x
00

00

0x
80

00

0x
40

00

0x
02

00

0x
01

00

0x
A00

0

0x
60

00

0x
42

04

0x
44

44

0x
55

00

0x
59

99

0x
55

55
0x

FFF
F

Mask x
0x

00
000x

80
000x

40
000x

02
000x

01
000x

A00
00x

60
000x

42
040x

44
440x

55
000x

59
990x

55
550x

FFF
F

M
as

k 
y

(g) Line 6.
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(h) Line 7.

Figure 19: T-test Results of Cache Line Flush Time for Gather
in Multiple Cache Lines under Varying Mask Registers.

access to Line 7, and thus show no evident difference in the
distribution of cache line flush time. In contrast, mask 0x4000
activates a gather from Line 7, resulting in a clearly increased
flush time compared to mask 0x0000, due to the line being
loaded into cache. The t-statistics for such cases are much
higher than others as shown in Figure 19h, indicating that
gather operations leak information about which lines are ac-
cessed, depending on the active bits in the mask.

Scatter. Masked scatter instructions exhibit similar but
more pronounced timing differences, as shown in Figures 18b
and 20. In this case, the effect of writing to memory causes
a longer cache line flush time due to the compulsory cache
writeback. For instance, comparing mask 0x0000 (i.e., no
write) to mask 0x8000 (i.e., writing to Line 7) results in a
substantial timing difference, again due to whether the cache
line is actually modified. Meanwhile, the difference between
0x0000 and 0x0200 is negligible, as both masks result in no
access to the corresponding cache line.



Table 2: The Summary of Vector Indices Used in the Experiment.

Cache Line 0 1 2 3 4 5 6 7
Index 0 0, 1 16, 17 32, 33 48, 49 64, 65 80, 81 96, 97 112, 113
Index 1 0, 1 16, 20 32, 33 48, 49 64, 65 80, 81 96, 97 112, 113
Index 2 2, 3 18, 19 34, 35 50, 51 66, 67 82, 83 98, 99 114, 115
Index 3 0, 0 16, 17 32, 32 48, 49 64, 64 80, 81 96, 96 112, 113
Index 4 0, 1, 10 17 32, 33, 40 49 64, 65, 70 81 96, 97, 100 113
Index 5 0, 1, 15 17 32, 33, 40 49 64, 65, 70 81 96, 97, 100 113
Index 6 2, 3, 12 19 34, 35, 42 51 66, 67, 72 83 98, 99, 102 115
Index 7 0, 0, 0 17 32, 32, 32 49 64, 64, 64 81 96, 96, 96 113
Index 8 0, 1, 10, 11 32, 33, 40, 41 64, 65, 70, 71 96, 97, 100, 101
Index 9 0, 1, 2, 8, 9, 10, 11, 12 64, 65, 66, 70, 71, 72, 73, 74

Index 10 0, 1, 2, 8, 9, 10, 11, 12 96, 97, 100, 101, 102, 103, 104, 105
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(h) Line 7.

Figure 20: T-test Results of Cache Line Flush Time for Scatter
in Multiple Cache Lines under Varying Mask Registers.

A.2 Vector Indices
Table 2 summarizes the index layout used in the test. Fig-
ures 21 and 22 show the t-test results of each cache line flush
time for gather and scatter in multiple cache lines under vary-
ing vector indices, respectively.

A.3 Word-Level Conflict
To investigate whether word-level microarchitectural conflicts,
such as false dependencies or cache bank contention, are af-
fected by the setting of mask bits in AVX-512 packed memory
instructions, we followed the methodology proposed in Mem-
Jam [24] and performed the following experiments.
Packed Load and Store. A victim thread executes a
masked packed load or store within a single cache line. We
vary the mask to selectively enable or disable access to a spe-
cific target word. An attacker thread simultaneously runs on
the sibling hyperthread of the same physical core and repeat-
edly accesses a group of memory addresses that may conflict
with the target word. To induce potential conflict: (1) When
the victim performs a packed load, the attacker performs a
store; and (2) When the victim performs a packed store, the
attacker performs a load. We measured the attacker’s access
latency in both cases and performed the hypothesis test again.
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Figure 21: T-test Results of Cache Line Flush Time for Gather
in Multiple Cache Lines under Varying Vector Indices.

Results shown in Figures 2c and 3c indicate that the mask
bit would not affect the likelihood or severity of word-level
conflicts for packed load and store instructions.
Gather and Scatter. A victim thread executes gather or
scatter with all-one masks across multiple cache lines. We
vary the vector indices (using Index 0 to 7 from Table 2)
but ensure the operation always touches every target cache
line. In parallel, an attacker performs read or write operations
mirroring our previous test setup. As shown in Figures 4c
and 5c, the results demonstrate that word-level conflicts for
gather and scatter are independent of the vector indices, as
long as all cache lines are touched.

A.4 Results on Intel Xeon Gold 5215

Figures 23 and 24 show the t-test results for packed load and
store operations, respectively, when accessing a single cache
line. Figure 25 present the t-test results for gather and scat-
ter operations on a single cache line. Figures 26, 27, and 28
display t-test results for gather and scatter operations that
access multiple cache lines. These figures analyze both ex-
ecution time and cache line flush times under varying mask
registers. Figures 29a, 29b, 30, and 31 also show t-test results
for gather and scatter operations across multiple cache lines.
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Figure 22: T-test Results of Cache Line Flush Time for Scatter
in Multiple Cache Lines under Varying Vector Indices.
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(a) Execution.
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(b) Cache Flush.
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(c) Word Access.

Figure 23: T-test Results for Packed Load in a Single Cache
Line under Varying Mask Registers on Intel Xeon Gold 5215.

These figures analyze the timing effects of varying the vector
indices. Figures 23c, 24c, 32a and 32b present t-test results
for word-level conflicts. Figures 23c and 24c analyze packed
load/store with varying masks, while Figures 32a and 32b
analyze gather/scatter with varying vector indices.

B Supplementary Results for Real-World Ap-
plications

Table 3 shows the number of memory access operations that
are vectorizable, those that require DFL, and the total number
of access operations for each benchmark.
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(c) Word Access.

Figure 24: T-test Results for Packed Store in a Single Cache
Line under Varying Mask Registers on Intel Xeon Gold 5215.

Table 3: A Comparison of the Number of Vectorized, Lin-
earized, and Total Memory Accesses.

Vectorized / Linearized /
Total Read

Vectorized / Linearized /
Total Write

BearSSL aes_big 31/31/182 0/0/82
des_tab 0/8/196 0/0/128

CHRONOS

aes 114/124/205 0/0/32
des 64/206/234 0/0/39

des3 192/525/599 0/0/100
anubis 32/92/178 0/0/90
cast5 0/333/391 0/0/54
cast6 0/256/400 0/0/15
fcrypt 0/64/94 0/0/21
khazad 7/40/56 0/0/8

APP-CR des 0/22/83 0/2/52

RACCOON

dijkstra 7/25/275 0/24/244
binsearch 0/1/9 0/0/8
histogram 8/8/17 8/8/8

rsort 0/6/26 0/5/16
permutation 0/1/12 8/10/12

heappop 2/4/24 2/2/22

LIBGCRYPT

camellia 0/32/49 0/0/48
des 0/144/199 0/0/15
seed 2/200/277 0/0/29

twofish 211/246/364 0/0/27

S-CP aes_core 0/132/208 0/0/28
cast-ssl 94/333/390 0/0/104

PYCRYPTO

aes 45/96/249 0/0/84
arc4 2/3/11 0/2/17

blowfish 24/24/116 0/0/75
cast 0/284/352 0/0/85
des 8/40/102 0/4/53

des3 24/136/290 0/12/142
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(a) Gather: Exe-
cution.
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(b) Gather:
Cache Flush.
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(c) Scatter: Ex-
ecution.
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(d) Scatter:
Cache Flush.

Figure 25: T-test Results for Gather/Scatter in a Single Cache
Line under Varying Mask Registers on Intel Xeon Gold 5215.
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(a) Gather.
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(b) Scatter.

Figure 26: T-test Results of Execution Time for Gather/Scatter
in Multiple Cache Lines under Varying Mask Registers on
Intel Xeon Gold 5215.
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0x
00

00

0x
80

00

0x
40

00

0x
02

00

0x
01

00

0x
A00

0

0x
60

00

0x
42

04

0x
44

44

0x
55

00

0x
59

99

0x
55

55
0x

FFF
F

Mask x
0x

00
000x

80
000x

40
000x

02
000x

01
000x

A00
00x

60
000x

42
040x

44
440x

55
000x

59
990x

55
550x

FFF
F

M
as

k 
y

(d) Line 3.
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Figure 27: T-test Results of Cache Line Flush Time for Gather
in Multiple Cache Lines under Varying Mask Registers.
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Figure 28: T-test Results of Cache Line Flush Time for Scatter
in Multiple Cache Lines under Varying Mask Registers.
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Figure 29: T-test Results of Execution Time for Gather/Scatter
in Multiple Cache Lines under Varying Vector Indices on Intel
Xeon Gold 5215.
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Figure 30: T-test Results of Cache Line Flush Time for Gather
in Multiple Cache Lines under Varying Vector Indices on Intel
Xeon Gold 5215.
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Figure 31: T-test Results of Cache Line Flush Time for Scatter
in Multiple Cache Lines under Varying Vector Indices on Intel
Xeon Gold 5215.
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Figure 32: T-test Results of Word-Level Conflict for Gather/S-
catter in Multiple Cache Lines under Varying Vector Indices
on Intel Xeon Gold 5215.


	Introduction
	Background and Motivation
	Timing Side Channels
	Vector Extensions
	Constant-Time Code Rewriting
	Vector Extension-Based DFL

	Threat Model
	CT Guarantees for AVX-512 Memory Access
	Methodology
	Mask Register
	Vector Indices
	Case Study: CT Violation in Constantine

	Design of VeCT
	CT Violation Detection and Linearization
	Baseline: a Naive Adoption of AVX-512
	VeCT Rewriting Strategy
	Memory Layout
	Constant-Time Load
	Constant-Time Store

	Vectorized Constant-time Load and Store
	Vectorization Identification
	Packed Load- and Store-based
	Gather- and Scatter-based


	Implementation and Evaluation
	Microbenchmark
	Real-World Applications

	Related Work
	Conclusion and Future Work
	Supplementary Results for CT Guarantees on AVX-512 Memory Access Operations
	Mask Register
	Single Cache Line
	Multiple Cache Lines

	Vector Indices
	Word-Level Conflict
	Results on Intel Xeon Gold 5215

	Supplementary Results for Real-World Applications

